Patty Wellborn

Email: patty-wellborn@news.ok.ubc.ca


 

The Okanagan-based CHIME radio telescope detected a fast radio burst from within the Milky Way in April 2020.

The Okanagan-based CHIME radio telescope detected a fast radio burst from within the Milky Way in April 2020.

UBCO researcher describes significance of findings

In the decade since they were first discovered, astronomers have categorized fast radio bursts (FRBs) as mysterious phenomena. But a recent astronomical event has provided further insight into the origin of these signals.

In a paper published recently in Nature, researchers confirm the evidence that supports their theory of what caused the April 28, 2020 event—a magnetar.

Magnetars, or high-magnetized pulsars, are remnants of dead stars that have gone supernova and left behind a compressed core that has more mass than the sun but is the diameter of a small city. Before this, researchers suspected that FRBs likely originate from magnetars, but no FRB-like event had been seen from any of the Milky Way’s roughly 30 known magnetars.

Alex Hill is an assistant professor of astrophysics in the Irving K. Barber Faculty of Science and a member of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) research team that made this discovery.

What is the CHIME project?

CHIME is a large radio telescope that was originally created to study the properties of dark energy. It was built in 2017 at the National Research Council’s Dominion Radio Astrophysical Observatory (DRAO) just outside of Penticton, BC.

Dark energy is a mysterious form of energy that’s causing the universe’s expansion to speed up over time. It’s challenging to study because we can’t see it—we can only see what it does to things we can see, like galaxies. Researchers from UBC, the University of Toronto and McGill University came together in partnership with DRAO to build CHIME in order to try and map out the properties of dark energy by observing hydrogen, the most abundant element in the universe.

My main focus within CHIME is using this telescope to study our own galaxy, the Milky Way, which we must look through to see the distant universe. This is a great challenge for cosmological science but a great opportunity for us to understand where the 'star stuff' we’re all made of comes from.

What makes the CHIME radio telescope different from others?

With a distinct cylindrical design, CHIME is definitely not what comes to mind when most people think of a telescope. It looks like four massive half-pipes laying next to each other, and it’s now the fourth-largest radio telescope in the world. This allows us to see a strip across the whole sky from the southern to northern horizons all at once. CHIME itself doesn’t move. Instead, when the earth rotates, we let the sky rotate over, so we’re seeing the sky in its entirety every day.

This is highly valuable because it lets our team build up many signals so we can detect very faint things. It also lets us see signals that go off periodically, like FRBs. When an FRB goes off, you don’t know in advance where it is, so you need to be seeing as much sky as possible at a given time to see most of them. CHIME is specifically designed to do this.

What did CHIME detect on April 28, 2020 and why is it significant?

CHIME detected a signal from within the Milky Way that appeared similar to FRBs. The team immediately released what’s called an astronomer’s telegram to let our fellow astronomers know something strange just happened and they should point their telescopes at it right away. FRBs are exactly what they sound like: mysterious bursts of radio emissions that go off quickly. Because they go off so quickly and usually leave no signal behind, you have to catch them the moment they appear.

We suspected that they might be coming from magnetars because they’re compact and have strong magnetic fields that produce radio signals. But there just wasn’t enough evidence to say one way or another.

The first FRB was detected in 2007, and there were around 30 to 50 of them detected before we built CHIME. Since then, CHIME has detected hundreds, but none in the Milky Way until 2020. This had us scratching our heads—if FRBs come from magnetars, as we had suspected, and we know our galaxy has magnetars, it was a bit of a puzzle that they’d never happened here.

The April 28 event was really affirming for our team. It was a pretty exciting day for astronomers because it was a first, and we finally had this new, concrete evidence that we were on the right track.

What makes the Okanagan ideal to host Canada’s national radio observatory?

In our line of work, we’re trying to detect radio signals. And to do so effectively we need a site that is as radio quiet as possible. Cell phones, TV towers and any other electronic device that produces radio frequency interference can threaten our success.

Our site is one of the best in the world for what we do. It’s ideal because, through a combination of regulation and geography, it is well-protected from radio signals. We’re one valley over from Penticton, so the mountains block radio signals from the city. At the observatory, we don’t use microwaves to heat our lunch, all of our computers are kept in metal cages that keep radio signals in, and we can’t use cell phones even in airplane mode. The observatory staff test every piece of electronics on-site to make sure they don’t harm our radio-quiet environment.

It may sound extreme but we’ve worked incredibly hard to keep our site radio quiet—it’s an enormous benefit to science. I don’t think there’s an observatory in the world with a better combination of an outstanding radio-quiet environment and easy access to a major population centre.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Gino DiLabio, inaugural dean of the Irving K. Barber Faculty of Science.

Gino DiLabio, inaugural dean of the Irving K. Barber Faculty of Science.

Faculty of Science’s inaugural dean shares bright vision for future

It was a summer to remember for UBC Okanagan’s newly-minted Irving K. Barber Faculty of Science.

The new Faculty of Science was formed in July alongside the Irving K. Barber Faculty of Arts and Social Sciences after the previously combined faculty grew and evolved into two new independent academic units.

The transition from one faculty into two marked a milestone for UBC Okanagan and signals the growth that the campus has experienced since its inception 15 years ago—expanding from 3,500 students in 2005 to more than 11,000 today.

The Faculty of Science’s inaugural Dean Gino DiLabio was recently appointed and is navigating his first term in the newly-created role. DiLabio, a chemistry professor and former head of UBCO’s chemistry department, explains the rationale for the new faculty and its commitment to research and partnerships within the community.

Why was it time to create the Irving K. Barber Faculty of Science at UBC Okanagan?

A lot of factors were taken into consideration when making this decision—but I’d say the biggest factor was that the sciences here on campus have grown so much since its inception in 2005.

The former Irving K. Barber School of Arts and Sciences had nearly 55 per cent of all of UBCO’s students, who were enrolled in many different programs. Transitioning into two separate faculties allows us to focus our attention and resources on advancing science education and research and in leading the growth of the campus as outlined in UBC’s Okanagan’s Outlook 2040 strategic plan.

What types of research are currently underway in the Faculty of Science?

Our faculty does everything from making new molecules to understanding ecological landscapes and nearly everything in between. We have expertise in artificial intelligence, machine learning and medical physics. We’re a relatively small faculty in comparison to other institutions, yet have a broad range of research that we’re engaged in locally, garnering national and international attention.

Initially, we will focus on identifying how we can combine our strengths across the research disciplines in the faculty to do truly unique things in the research and educational programming spaces.

Why are increased partnerships between the Faculty of Science and local industry important for both?

If we can use our skillset to conduct world-renowned research while helping local industry solve a problem, to me it’s a win-win. We have some incredible partnerships within the community already, but I’d like to see more.

The first that comes to mind is Chemistry Professor Wesley Zandberg’s partnership with local grape growers. He’s working with farmers to develop a preventative strategy that protects wine grapes from the negative effects of wildfire smoke. Another example is the work of Professor Lael Parrott, who is collaborating with Indigenous traditional knowledge holders to find sustainable ways to manage the Okanagan landscape.

These are great examples of Okanagan researchers solving Okanagan problems; not only do they allow our community to be more self-reliant, it’s also pretty cool.

How do you see the Faculty of Science evolving over the next five years?

Broadly speaking, I’d like us to continue on this growth trajectory. Over the past couple of years, the Irving K. Barber School of Arts and Sciences has hired several faculty members in the sciences, both educators and researchers, and I hope to work with them on continuing to grow our undergraduate and graduate programs, as well as our research output.

The Faculty of Science is, and will continue to be, an important part of this campus’ identity in the years to come. We’re not a stand-alone entity, we’re an integral part of the community, helping to develop the socio-economic landscape in the region—but we don’t do it on our own. We do it in partnership with other faculties on our campus, local Indigenous communities, broader communities and industry partners. I’d like to see us continue to nurture these relationships and leverage them to do good for all involved—that, to me, would be a true success.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Landscape left untouched after a wildfire can regenerate and create protective cover for red squirrels and the snowshoe hare, and important species like coyotes, lynx, bobcats and owls depend on it to survive. Photo credit Angelina Kelly.

Landscape left untouched after a wildfire can regenerate and create protective cover for red squirrels and the snowshoe hare, and important species like coyotes, lynx, bobcats and owls depend on it to survive. Photo credit Angelina Kelly.

Salvage harvesting logging damages vital habitat for wildlife species

New research from UBC Okanagan shows that salvage logging on land damaged by wildfires has negative impacts on a variety of animals.

While post-fire salvage logging is used to mitigate economic losses following wildfire, Karen Hodges, a biology professor in the Irving K. Barber Faculty of Science, says the compounded effects of wildfire and post-fire salvage logging are more severe than what wildlife experience from fire alone.

Wildfires have been increasing in prevalence and severity in recent decades, Hodges says, and salvaging trees after a fire is a common practice. However, the scale and intensity of post-fire logging removes important regenerating habitat for a variety of forest species.

“When trees are removed from a newly burned landscape, birds and mammals lose the last remnants of habitat,” she adds. “Salvage logging decreases forest biodiversity and changes ecological processes of post-fire forest regeneration. Mosaics of regenerating forest are changed through the removal of standing and downed trees, which would naturally remain on the landscape following fire.”

Hodges notes while BC’s logging industry is heavily regulated, harvesting differs between normal harvests and post-fire logging. More frequent wildfires mean an increase in post-fire salvage logging.

“Salvage logging is often done urgently as harvesters attempt to get burned timber to market before the wood deteriorates,” she says. “Salvage logging is also done at larger scales and intensities than a standard harvest. This post-fire harvest means wildlife species that can manage after a wildfire do not rebound as quickly from this second disturbance.”

The research led by master’s student Angelina Kelly studied populations of snowshoe hares and red squirrels in post-fire and salvage-logged areas of the Chilcotin—an area severely impacted by wildfires in 2010 and 2017. Hares and squirrels are important species because predators such as coyote, bobcats, marten, lynx, goshawks and great horned owls rely on them to survive.

“The main concern of a snowshoe hare is to avoid predators. Hares select stands with protective vegetation cover and avoid open areas like clearcuts—even if those areas provide food,” says Kelly. “Because of their need for vegetative cover, snowshoe hare populations decrease immediately following fires, clearcut logging or salvage logging.”

Their study area, about 32,000 hectares on the eastern edge of the Chilcotin Plateau, was ravaged by wildfire in 2017. While looking for evidence of hares and squirrels, the researchers also conducted vegetation surveys to quantify important habitat attributes in mature forests, burned forest and areas where salvage logging had taken place.

“Post-fire salvage logging greatly changed the habitat structure of post-fire stands, removing vegetative cover and rendering those sites unsuitable for hares and red squirrels,” says Kelly. “The post-fire salvage-logged areas supported no hares or red squirrels for at least eight to nine years after the initial wildfire. Burn areas where no post-fire harvesting took place supported low densities of hares and red squirrels by that time.”

This loss of prey species contributes to declines in forest predators such as lynx, marten and owls, as Hodges and her team have documented in this region and other studies.

Hodges and Kelly stress that any trees or vegetation left after a wildfire are critical for wildlife immediately after a fire, and promote a healthy mosaic of post-fire habitat. Residual trees facilitate regeneration of burned areas, while also supporting wildlife.

Their research was published recently in Forest Ecology and Management, and was funded by grants from the Habitat Conservation Trust Foundation and the Natural Sciences and Engineering Research Council of Canada.

UBCO researchers say post-fire salvage logging removes important regenerating habitat for a variety of species including the snowshoe hare. Photo credit Angelina Kelly.

UBCO researchers say post-fire salvage logging removes important regenerating habitat for a variety of species including the snowshoe hare. Photo credit Angelina Kelly.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

UBC Okanagan researchers say breadfruit is nutritionally sound and has the potential to improve worldwide food security issues. Photo credit Jan Vozenilek, Copper Sky Productions, Kelowna.

UBC Okanagan researchers say breadfruit is nutritionally sound and has the potential to improve worldwide food security issues. Photo credit Jan Vozenilek, Copper Sky Productions, Kelowna.

Breadfruit is sustainable, environmentally friendly and a high-production crop

A fruit used for centuries in countries around the world is getting the nutritional thumbs-up from a team of British Columbia researchers.

Breadfruit, which grows in abundance in tropical and South Pacific countries, has long been a staple in the diet of many people. The fruit can be eaten when ripe, or it can be dried and ground up into a flour and repurposed into many types of meals, explains UBC Okanagan researcher Susan Murch.

“Breadfruit is a traditional staple crop from the Pacific islands with the potential to improve worldwide food security and mitigate diabetes,” says Murch, a chemistry professor in the newly-created Irving K. Barber Faculty of Science. “While people have survived on it for thousands of years there was a lack of basic scientific knowledge of the health impacts of a breadfruit-based diet in both humans and animals.”

Breadfruit can be harvested, dried and ground into a gluten-free flour. For the project, researchers had four breadfruits from the same tree in Hawaii, shipped to the Murch Lab at UBC Okanagan. Doctoral student Ying Liu led the study examining the digestion and health impact of a breadfruit-based diet.

“Detailed and systematic studies of the health impacts of a breadfruit diet had not previously been conducted and we wanted to contribute to the development of breadfruit as a sustainable, environmentally-friendly and high-production crop,” Liu says.

The few studies done on the product have been to examine the glycemic index of breadfruit—with a low glycemic index it is comparable to many common staples such as wheat, cassava, yam and potatoes.

“The objective of our current study was to determine whether a diet containing breadfruit flour poses any serious health concerns,” explains Liu, who conducted her research with colleagues from British Columbia Institute of Technology’s Natural Health and Food Products Research Group and the Breadfruit Institute of the National Tropical Botanic Garden in Hawaii.

The researchers designed a series of studies—using flour ground from dehydrated breadfruits—that could provide data on the impacts of a breadfruit-based diet fed to mice and also an enzyme digestion model.

The researchers determined that breadfruit protein was found to be easier to digest than wheat protein in the enzyme digestion model. And mice fed the breadfruit diet had a significantly higher growth rate and body weight than standard diet-fed mice.

Liu also noted mice on the breadfruit diet had a significantly higher daily water consumption compared to mice on the wheat diet. And at the end of the three-week-trial, the body composition was similar between the breadfruit and wheat diet-fed mice.

“As the first complete, fully-designed breadfruit diet study, our data showed that a breadfruit diet does not impose any toxic impact,” says Liu. “Fundamental understanding of the health impact of breadfruit digestion and diets is necessary and imperative to the establishment of breadfruit as a staple or as a functional food in the future.”

The use of breadfruit is nutritious and sustainable and could make inroads in food sustainability for many populations globally, she adds. For example, the average daily consumption of grain in the United States is 189 grams (6.67 ounces) per day. Liu suggests if a person ate the same amount of cooked breadfruit they can meet up to nearly 57 per cent of their daily fibre requirement, more than 34 per cent of their protein requirement and at the same time consume vitamin C, potassium, iron, calcium and phosphorus.

“Overall, these studies support the use of breadfruit as part of a healthy, nutritionally balanced diet,” says Liu. “Flour produced from breadfruit is a gluten-free, low glycemic index, nutrient-dense and complete protein option for modern foods.”

The study was recently published in PLOS ONE.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

The Alpine Club of Canada’s general mountaineering camp, set up for the summer of 2019. Photo credit: Lael Parrott

The Alpine Club of Canada’s general mountaineering camp, set up for the summer of 2019. Photo credit: Lael Parrott

Biodiversity, glacier health and sea mountains featured in annual report

While many know of the canary in the coal mine analogy, a team of researchers are using Canada’s mountain ranges as their canary. And, like the coal miners, they say Canadians should be worried.

Each year the Alpine Club of Canada (ACC) issues a State of the Mountains report, tallying what climate change is doing to glaciers and rivers, alpine flora and fauna as well as mountain communities and people. The report is co-edited by UBC Okanagan’s Lael Parrott, a professor of sustainability in the earth, environmental and geographic sciences department and ACC vice-president for access and environment.

“Mountains are indeed sentinels for understanding a rapidly changing world,” says Parrott. “And Canada’s mountains, like those around the world, are experiencing a variety of worrying changes. Glaciers are disappearing and many species of plants and animals are being forced to either adapt to changing conditions or perish.”

But, Parrott says, Canada’s mountain experts are also discovering new information that will help to address these challenges. And the report shares positive news, highlighting how Indigenous communities and Canada’s youth are mobilizing to create opportunities for conservation and sustainability.

“What stands out this year are the two articles on seamounts,” says Parrott. “It’s the first time we cover underwater mountain ranges. Just like terrestrial mountains, the complex topography and elevational changes in seamounts also create special niches that support high diversity and unique ecosystems.”

Parrott explains the report is a collection of contributions from Canadian experts, including those living in mountain communities, Indigenous peoples, scientists and natural resource managers. Experts explain how landslides and volcanic eruptions, always a significant risk to people and property, are increasing due to climate change and increased human activity in the mountains. Specialists also examine the downstream impact of mining, recent changes in mountain glaciers and the importance of the biodiversity of plants and animals in Canada’s mountains.

Other key findings in the report include an explanation of new tools to forecast avalanches, document biodiversity and predict the impacts of climate change.

“Of course, climate change permeates all of the articles,” says Parrott. “The impacts of climate change are felt so strongly at high elevations and these impacts manifest into increasing landslides, changing vegetation, melting glaciers and much more.”

The third annual State of the Mountains report is available online at: stateofthemountains.ca. Learn more about Parrott’s work at: ourstories.ok.ubc.ca/stories/lael-parrott.

“We’re hoping to raise Canadian’s awareness about the urgency of acting to protect our mountain environments,” she adds. “And that people will become advocates for mountain conservation and mountain stewardship.”

South Chilcotin Provincial Park. Photo credit: Lael Parrott

South Chilcotin Provincial Park. Photo credit: Lael Parrott

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Coral species differ in their contribution to the complexity of the habitat, and their response to disturbances and capacity to compete. Modelling the resilience of coral communities will help ecologists design reef management and restoration strategies. Photo credit: Jean-Philippe Maréchal.

Coral species differ in their contribution to the complexity of the habitat, and their response to disturbances and capacity to compete. Modelling the resilience of coral communities will help ecologists design reef management and restoration strategies. Photo credit: Jean-Philippe Maréchal.

‘Virtual’ coral reefs become diagnostic tool to help manage the planet’s reefs

A UBC Okanagan researcher has developed a way to predict the future health of the planet’s coral reefs.

Working with scientists from Australia’s Flinders University and privately-owned research firm Nova Blue Environment, biology doctoral student Bruno Carturan has been studying the ecosystems of the world’s endangered reefs.

“Coral reefs are among the most diverse ecosystems on Earth and they support the livelihoods of more than 500 million people,” says Carturan. “But coral reefs are also in peril. About 75 per cent of the world’s coral reefs are threatened by habitat loss, climate change and other human-caused disturbances.”

Carturan, who studies resilience, biodiversity and complex systems under UBCO Professors Lael Parrott and Jason Pither, says nearly all the world’s reefs will be dangerously affected by 2050 if no effective measures are taken.

There is hope, however, as he has determined a way to examine the reefs and explore why some reef ecosystems appear to be more resilient than others. Uncovering why, he says, could help stem the losses.

“In other ecosystems, including forests and wetlands, experiments have shown that diversity is key to resilience,” says Carturan. “With more species, comes a greater variety of form and function—what ecologists call traits. And with this, there is a greater likelihood that some particular traits, or combination of traits, help the ecosystem better withstand and bounce back from disturbances.”

The importance of diversity for the health and stability of ecosystems has been extensively investigated by ecologists, he explains. While the consensus is that ecosystems with more diversity are more resilient and function better, the hypothesis has rarely been tested experimentally with corals.

Using an experiment to recreate the conditions found in real coral reefs is challenging for several reasons—one being that the required size, timeframe and number of different samples and replicates are just unmanageable.

That’s where computer simulation modelling comes in.

“Technically called an ‘agent-based model’, it can be thought of as a virtual experimental arena that enables us to manipulate species and different types of disturbances, and then examine their different influences on resilience in ways that are just not feasible in real reefs,” explains Carturan.

In his simulation arena, individual coral colonies and algae grow, compete with one another, reproduce and die. And they do all this in realistic ways. By using agent-based models—with data collected by many researchers over decades—scientists can manipulate the initial diversity of corals, including their number and identity, and see how the virtual reef communities respond to threats.

“This is crucial because these traits are the building blocks that give rise to ecosystem structure and function. For instance, corals come in a variety of forms—from simple spheres to complex branching—and this influences the variety of fish species these reefs host, and their susceptibility to disturbances such as cyclones and coral bleaching.”

By running simulations over and over again, the model can identify combinations that can provide the greatest resilience. This will help ecologists design reef management and restoration strategies using predictions from the model, says collaborating Flinders researcher Professor Corey Bradshaw.

“Sophisticated models like ours will be useful for coral-reef management around the world,” Bradshaw adds. “For example, Australia’s iconic Great Barrier Reef is in deep trouble from invasive species, climate change-driven mass bleaching and overfishing.”

“This high-resolution coral ‘video game’ allows us to peek into the future to make the best possible decisions and avoid catastrophes.”

The research, supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation, was published recently in eLife.

A UBCO researcher is using years of compiled data to determine how virtual reef communities will respond to threats including cyclones and coral bleaching. Photo credit: Jean-Philippe Maréchal.

A UBCO researcher is using years of compiled data to determine how virtual reef communities will respond to threats including cyclones and coral bleaching. Photo credit: Jean-Philippe Maréchal.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning founded in 2005 in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose territory the campus resides. As part of UBC—ranked among the world’s top 20 public universities—the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley.

To find out more, visit: ok.ubc.ca

Nobel Night 2016

Learn about the world-changing discoveries and achievements

What: Nobel Night panel discussion at UBC Okanagan
Who: University researchers discuss the 2019 Nobel Prizes
When: Tuesday, December 10, beginning at 7 p.m., refreshments to follow
Where:  Room COM 201, The Commons building, 3297 University Way, UBC Okanagan, Kelowna

Planets, poverty, peace and powerful batteries. The science and activism behind all of these are tied together this year by the lasting legacy of Alfred Nobel’s annual recognition for game-changes.

On December 10, thousands of kilometres away from the Okanagan, world leaders will gather in both Stockholm and Oslo to watch as the 2019 Nobel Prizes are presented. This year, 15 laureates will be honoured for discovering planets outside our solar system, working to reduce global poverty in all forms or trying to stop a war.

At UBC Okanagan’s Nobel Night -- a tradition upon its own -- university professors will explain why these awards and the recognition they garner are relevant in today’s changing world. UBC professors will discuss each award, the winners and why they matter.

The event, emceed by UBC Vice-Principal and Associate Vice-President, Research and Innovation Phil Barker, takes place in the Commons lecture theatre. Following the presentations, there will be an opportunity for audience questions and a social with refreshments.

This event is free and open to the public. For more information and to register visit: 2019nobelnight.eventbrite.ca

The Nobel Prize in Physics

Tim Robishaw, adjunct professor in the department of computer science, mathematics, physics and statistics will talk about James Peebles work on theoretical discoveries in physical cosmology. The award is jointly shared this year with Michel Mayor and Didier Queloz for their discovery of an exoplanet orbiting a solar-type star.

The Nobel Prize in Chemistry

Jian Liu, assistant professor of mechanical engineering, will discuss the work of John B Goodenough, M Stanley Whittingham and Akira Yoshino for the development of lithium-ion batteries.

The Nobel Prize in Physiology or Medicine

Glen Foster, assistant professor in the School of Health and Exercise Sciences, will highlight William G Kaelin Jr, Peter J Ratcliffe and Gregg L Semenza’s discoveries of how cells sense and adapt to oxygen availability.

The Nobel Prize in Literature

Bryce Traister, professor of English and dean of the Faculty of Creative and Critical Studies, will talk about Peter Handke for his influential work with linguistic ingenuity.   

The Nobel Peace Prize

Professor of Political Science Helen Yanacopulos will speak to the accomplishments of Abiy Ahmed Ali for his efforts to achieve peace and resolve the border conflict between Ethiopia and Eritrea.

The Economic Sciences

UBC Provost and Vice-President, Academic Ananya Mukherjee Reed will discuss the work of Abhijit Banerjee, Esther Duflo and Michael Kremer for their experimental approach to alleviating global poverty.

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca

100 Debates on the Environment brings policies to the forefront

When: Thursday, October 3, from 7 to 9 p.m.
What: 100 Debates on the Environment, Kelowna-Lake Country candidates
Who: Federal candidates in Kelowna-Lake Country riding
Where: Arts and Sciences building, room ASC 140, 3187 University Way, UBC Okanagan

Organized by UBC Okanagan’s Institute for Biodiversity, Resilience and Ecosystem Services, election hopefuls will be on campus for a question and answer session on Thursday, October 3.

Each candidate will have to answer four questions—the same being asked of candidates across Canada that day and provided by 100 Debates on the Environment. The 100 Debates project is a non-partisan initiative with the goal to bring climate change and environmental policy issues to the forefront of the election.

After the questions are answered, candidates can address some locally focused topics. There will be time for audience questions near the end. Moderated by former Global Okanagan news anchor Rick Webber, the event is politically neutral.

The event is free and open to the public, but pre-registration is required: 100debates-kelownalc.eventbrite.ca

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca

Collaboration brings cancer research to the community

What: Future of Health Forum on cancer care
Who:  More than 150 delegates and 30 renowned speakers
When: Friday, October 18, from 8 a.m. to 6 p.m.
Where: The Innovation Centre, 460 Doyle Ave., Kelowna, BC
Cost: $50 registration fee

With cancer remaining the leading cause of death in BC, the first-ever Future of Health Forum will focus on research, innovation and strides to improve outcomes for all cancer patients.

UBC Okanagan, Accelerate Okanagan, BC Cancer and Interior Health have joined forces to host an annual forum called Future of Health—an event designed to foster connection and provide an opportunity to exchange ideas around health research and innovation.

For this inaugural year, the Future of Health focuses on cancer and follows the patient journey from preventing and detecting the disease through to diagnosis and treatment and finding ways to support survivors and a patient’s quality of life.

“Our hope is that we have created an environment where clinical and academic colleagues can share their perspectives on the complex problems facing the health-care system today,” says Dr. Ross Halperin, regional medical director for BC Cancer—Kelowna. “Our strategy is to attract and engage the regional innovation community to assist in developing innovative solutions.”

Taking place at the Innovation Centre in downtown Kelowna, leaders in cancer care and research will discuss the current state of cancer care in BC and the innovative research that is shaping the future of health in this province.

“We have attracted top talent from across the country to take the stage at this event,” explains Anne-Marie Visockas, vice-president research and planning with Interior Health. “I think this speaks volumes about the collaborative nature of Canadian health care and our community's reputation for innovation.”

Dr. Connie Eaves, an international leader in stem cell research will deliver the keynote address. Eaves is the winner of the prestigious 2019 Canada Gairdner Wightman Award for her pioneering discoveries and advocacy for early-career researchers and women in science.

Dr. Eaves is an extraordinarily creative and accomplished biomedical scientist at the forefront of cancer research. Her work establishing the role of cancer stem cells in breast cancer and leukemia have led to paradigm-shifting insights,” says Phil Barker, vice-principal and associate vice-president, research and innovation at UBC. “She is dedicated to training the next generation of researchers to help find cures for cancer and her research is a superb demonstration of the value of collaborating across disciplines.”

The closing reception will include a screening of The Nature of Things documentary, Cracking Cancer. This short film recounts the journey of seven cancer patients at BC Cancer as they take part in the Personalized Onco-Genomics (POG) program—a cutting-edge clinical research initiative that is changing the way oncologists view cancer treatment.

“The strength of our region lies in our ability to collaborate and innovate. This event is another example of these skills at work,” says Brea Lake, acting CEO at Accelerate Okanagan. “Our hope is that this documentary will give hope to those living with cancer and inspire our innovative and entrepreneurial community to join in building the future of health and cancer care right here in BC.”

The Future of Health Forum takes place October 18 and is open to all, including researchers, clinicians, students, innovators, entrepreneurs and the public.

For event information and registration details, visit: futureofhealth.ca

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca

Gibsons’ CAO shares experience developing eco-assets strategy

What: Nature’s Role as Municipal Infrastructure
Who: Emanuel Machado, Chief Administrative Officer, Town of Gibsons, BC
When: Wednesday, September 18 starting at 4:30 p.m.
Where: The Engineering, Management and Education building, room EME 1202, 3333 University Way, UBC's Okanagan campus

Natural assets and the ecosystem services they provide are a fundamental part of local government infrastructure. When properly managed, natural assets such as forests, wetlands and green spaces have many advantages over engineered infrastructure—including being less expensive to operate and maintain.

The Town of Gibsons, BC, was the first North American municipality to manage natural resources using asset management, financial management and ecology principles that are systematically applied to managing engineered assets.

Gibsons’ Chief Administrative Officer Emanuel Machado will share his experience in developing the town’s eco-assets strategy at a special event on September 18 at UBCO. Machado has worked with communities across Canada, promoting a greater use of renewable energy, net-zero buildings, water strategies, social plans and sustainability frameworks, all with a focus on people.

This event, presented by UBC’s Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services (BRAES), is free and open to the public. BRAES is a group of more than 30 researchers and graduate students working in ecology, biodiversity and conservation, and environmental sustainability on UBC’s Okanagan campus.

To learn more about BRAES, visit: braes.ok.ubc.ca

About UBC's Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world.

To find out more, visit: ok.ubc.ca