Apologies, but no results were found.
Jeff Andrews
Associate Professor
Data Science, Mathematics, Statistics
Office: SCI 111Phone: 250.807.9931
Email: jeff.andrews@ubc.ca
Graduate student supervisor

Research Summary
Clustering and classification via mixture models with applications to bioinformatics.
Courses & Teaching
Statistics; data science.
Biography
Jeff’s research primarily investigates finite mixture models and their usage in statistical machine learning. His focus is on clustering and classification, with peer-reviewed articles exploring parameter estimation, variable selection, and model development.
Websites
Degrees
PhD (University of Guelph), MSc (University of Guelph), BSc (Honours, Acadia University)
Research Interests & Projects
Andrews Research Group
Active and past projects include parameter estimation algorithms, software development in R, robust variable selection, and applied projects in engineering, biology, ecology, health and physics.
Undergraduate Research Assistants
Undergraduate students interested in summer research opportunities are encouraged to discuss in person. Completion of 3rd year in Math/Statistics/Computer Science/Data Science, including strong performance in Machine Learning (DATA 311) is generally a pre-requisite for fruitful summer projects — but exceptions may be possible.
Graduate Supervision
Prospective students must meet program eligibility requirements with excellent performance in upper-year mathematics/statistics courses, ideally including a course in multivariate statistics/machine learning. Research experience at the undergraduate level is an asset. Proficiency in scientific writing, R (and/or general computer programming), and LaTeX document preparation are also assets. Graduate award applications to NSERC CGS are encouraged — these generally have internal deadlines at the university you are graduating from and it is advantageous to discuss potential projects ahead of time. Teaching assistantships and other sources of funding are available for qualified incoming grad students.
Software
teigen: Model-based clustering and classification with the multivariate t-distribution. CRAN
mmtfa: Model-based clustering and classification with mixtures of modified t factor analyzers. CRAN
vscc: Variable selection for clustering and classification. CRAN
Selected Publications & Presentations
Selected Grants & Awards
Principal Investigator
- NSERC Discovery Grant (2014-2020, 2020-2025)
- UBCO OVPRI Support (2021-2022)
- Mitacs Accelerate (2018)
- NSERC Engage (2017-2018, 2019)
- CFI John R. Evans Leaders Fund (2017)
Co-Investigator
- Tri-Council New Frontiers in Research Fund – Exploration Stream (2022-2024)
- BC Cancer Center Priorities Advisory Group Fund (2018-2021)
- UBCO OVPRI Eminence Fund (2017-2020)
- Cisco Grants for Catalyzing Smart City Innovations (2017-2018)
Professional Services/Affiliations/Committees
- Principal Co-Director (2020-2023), Master of Data Science Program, Okanagan Campus
- Board of Directors (2015-2020), President-Elect (2022-2023), President (2024-2025), Past President (2026-2027), The Classification Society
- Committee Member, New Investigators
- Member, Statistical Society of Canada
- Member, Medical Physics and Data Analytics Cluster
- Member, Materials and Manufacturing Research Institute